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Computational complexity of determining the barriers to interface motion in random systems

A. Alan Middleton
Department of Physics, Syracuse University, Syracuse, New York 13244

~Received 28 July 1998!

The low-temperature driven or thermally activated motion of several condensed matter systems is often
modeled by the dynamics of interfaces~co-dimension-1 elastic manifolds! subject to a random potential. Two
characteristic quantitative features of the energy landscape of such a many-degree-of-freedom system are the
ground-state energy and the magnitude of the energy barriers between given configurations. While the numeri-
cal determination of the former can be accomplished in time polynomial in the system size, it is shown here
that the problem of determining the latter quantity is nondeterministic polynomial time complete. Exact
computation of barriers is therefore~almost certainly! much more difficult than determining the exact ground
states of interfaces.@S1063-651X~98!14611-1#

PACS number~s!: 05.45.2a, 05.70.Ln, 02.70.Lq, 75.10.Nr
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I. INTRODUCTION

Numerical computation has been extensively used
confirming scaling relations from analytical work and f
computing exponents in the statistical mechanics of dis
dered systems, such as random magnetic systems@1#. In or-
der to calculate long wavelength and low frequency beh
iors, and to precisely determine exponent values, one n
to study a number of samples of large dimension. The uti
of numerical techniques strongly depends on how the c
putational demands, such as the number of operations ne
by an algorithm, scales with system size. Direct simulat
by Monte Carlo techniques often cannot be used to de
mine the exact ground state in large systems, for exam
due to the extremely slow relaxation times typical of dis
dered systems@2#. In contrast, the exact ground state can
found for many systems@3–6#, using combinatorial optimi-
zation techniques, with a computational time that gro
polynomially with the volume of the systemV ~in practice,
the computational time often scales roughly asVb, with 1
,b,2 @5,6#.! More detailed information about the ‘‘energ
landscape’’ of the model, besides ground state energie
needed to determine dynamical behavior, which is gener
modeled by studying thermal activation over barriers
tween low-energy states@2,7#. It is shown in this paper that
for many models that might be of physical interest, the n
merical study of barrier heights is in the set of NP-compl
problems@8#.

To define NP-complete problems, one first defines
~nondeterministic polynomial time! problems@8#. A problem
that is NP is one for which a proposed solution can be v
fied in an amount of time that grows no faster than a po
nomial in the size of the problem definition, given a model
a computer as a Turing machine@9#. An NP-complete prob-
lem is then defined as an NP problem such that if th
existed an algorithm that produced a solution in polynom
time ~polynomial in the size of the definition of the problem!,
such an algorithm could be adopted to solve any NP prob
in polynomial time. The class of NP-complete problems
cludes the traveling salesman problem@8# and ground states
of spin glasses on general graphs@10#. It is generally be-
lieved that no polynomial-time algorithm exists for NP
PRE 591063-651X/99/59~3!/2571~7!/$15.00
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complete problems, though a proof of this is an outstand
problem in computer science. Showing that determining b
rier heights can be an NP-complete problem theref
strongly suggests that no polynomial time algorithm can
found that exactly determines barrier heights.

II. INTERFACE MODEL

To address the computational complexity of a problem
discrete formulation must be given and the size of the pr
lem must be defined. We consider here the study of the c
figurations of a self-avoiding, connectedD-dimensional in-
terface embedded in a bounded regionX,Rd, d5D11,
such as might be used to approximate a domain wall i
magnet. The interface separatesX into two disjoint sets. A
discretization can be made by approximating the interface
a set ofD-dimensional polyhedra, which are the faces
d-dimensional cells that partition the regionX. One might
consider the cells to represent actual atoms~with the polyhe-
dral faces being polygons ford53 lattices! or as elements of
a coarse-grained description, with cells having a size of ty
cal disorder-induced distortions in the elastic interface@11#.
The size of the interface problem can then be defined as
number of cellsn in the decomposition ofX, assuming that
there is ann-independent bound on the number of faces
any cell, so that the number of discrete faces that make
the interface is then bounded by a constant multiple on
@12#. The dynamics of the interface is a sequence of sim
moves that move the interface through primitive cells, one
a time, while maintaining the self-avoidance and connect
ness constraints.

For this model of an interface, it is natural to reformula
the interface problem as an Ising model on a graphG0
5(V0 ,E0) given by the cellular decomposition ofX. The
nodes of the graphV0 are identified with the primitive cells
~E0 will be defined for special cases, in the next paragrap!
Each node is assigned a spin variablesi , which takes on
values61, with a sign depending on which side of the i
terface celli, 1< i<n, belongs to. In general, the energy
the interface could be any function of the$si% and could have
a number ofindependentvalues exponential inn. Determin-
ing the ground state of the interface given by such an ene
2571 ©1999 The American Physical Society
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2572 PRE 59A. ALAN MIDDLETON
function would likely necessitate the computation of a nu
ber of energies exponential in the volume. We do not c
sider this case here, as it is not of physical interest.

A more restricted, but natural case, is to represent
energy of an interface as the sum over interactions betw
the spins. That is, consider the energy function

E52(
i , j

Ji j sisj , ~1!

where theJi j are edge weights; whenJi j Þ0, an edgee
5( i , j )PE0 is included inG0 . We consider here only the
case ofJi j >0, as the case whereJi j ,0 for some bonds is
the spin-glass problem, for which determining even
ground state is an NP-complete problem, for graphs of ph
cal lattices in more than two dimensions@10#. The energy is
equal to twice the total weight of the bonds that intersect
interface, up to the additive constant2( i j Ji j . If the energy
is given by nearest neighbor interactions, i.e.,Ji j Þ0 only for
cells i and j that share a face, this energy corresponds t
nearest neighbor random-bond Ising model~RBIM!.

The ground state energy of the interface is then define
finding the minimum ofE over all configurations$si%, pos-
sibly subject to boundary conditions that define the two
gions of space that are to be separated. Such ground
energies and configurations give a great deal of informa
about the system, including the response to boundary co
tion changes and sensitivity to random changes in theJi j
@13#. Such information for the RBIM and many other pro
lems can be found using polynomial-time algorithms@5,6#.

A more subtle characterization of the energy landscap
the energetics of extremal paths in configuration space
sequence of configurations related by simple moves~flips of
single spins adjacent to the interface! are the paths of interes
in configuration space. The cost of a path is defined as
maximal value of the interface energy over all intermedi
configurations in the path. The barrier between two giv
configurations can then be defined as the minimal cost o
all allowed paths between the two configurations.

More precisely, a pathQ of length M is defined by an
initial configuration $si% and a sequence of locations fo
single spin flips,$Q1 ,Q2 ,...,QM%, with 1<Qj<n for all 1
< j <M . Each spin flip corresponds to moving a cell fro
one partition~side of the interface! to the other, with the
sequence constrained by the interface self-avoidance
connectedness conditions. The result of a partial sequenc
spin flips Pk

Q5(Q1 ,...,Qk), 1<k<M , operating on a spin
configuration$si% is given by its action on individual spins

Pk
Qsi5~21!nkisi , ~2!

wherenki is the number of timesQl5 i for 1< l<k. P0 is
the identity operation. The value of the barrierB(S1 ,S2)
separating two spin configurationsS15$si

1% andS25$si
2% is

then given by

B~S1 ,S2!5 min
$QuPM

Q
~S1!5S2%

max
k50,...,M ~Q!

E@Pk
Q$si%#. ~3!
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III. BARRIER FOR AN ARBITRARY GRAPH

Though the ground state of the random-bond or rando
field Ising magnet for a given realization of bonds can
computed in an amount of time bounded by a polynomia
the number of bonds and sites@3–6#, the problem of finding
the barrier between two states will be shown here to bel
to the class of NP-complete problems, for the motion o
self-avoiding interface. There are no known polynomial-tim
algorithms for solving NP-complete problems and it is ge
erally believed that such problems require a time for solut
that grows faster than any polynomial in the problem s
@8#. The barrier problem is therefore~almost certainly! in a
computational complexity class distinct from that of th
ground-state problem.

The barrier problem can be shown to be NP-complete
general graphs. This is done by a reduction@8# of a register
allocation problem, which has been shown to be N
complete@14#, to the barrier problem. Loosely stated~see
@14# for more detail!, the register allocation problem is tha
of determining the amount of memory a CPU needs to us
store intermediate results in the evaluation of an arithmet
expression. The problem size is given by the size of
arithmetical expression, which is defined by a set of par
thesized binary operations. Initially, no register memory
used, but values for the variables in the expression are loa
into registers and intermediate results are stored in regis
until the expression is completely evaluated. The cost to
minimized is the maximum number registers in use at a
time during the computation. The cost is affected by t
order in which the binary operations are evaluated and
which the values are loaded into registers. The corresp
dence between the register allocation problem and find
the minimal barrier to interface motion can be made by id
tifying cells as the numerical values~original inputs to the
expression and the results of binary operations! needed in the
evaluation of the arithmetic expression and identifyi
shared faces of the cells with the dependencies of result
subexpressions. The interface separates evaluated num
from intermediate results yet to be computed. The energ
the interface is taken to be the number of cells that con
one side of the interface; this is the number of intermedi
results that are available in registers for further evaluation
the expression. The optimization of register use is th
equivalent to finding the minimum energy barrier to movi
an interface through the graph determined by the algeb
expression. As the register allocation problem is N
complete, the corresponding~high-dimensional! interface
problem is NP-complete. I do not give a more detailed pro
here, however, as the following section shows that a
stricted interface barrier problem is NP-complete. This
rectly implies the NP-completeness of the more gene
problem. It is of interest, however, to note the close relatio
ship between the determination of barriers in a type of int
face motion and computational resource problems such
register allocation.

IV. BARRIER FOR A LOOP IN D52

Consider now the more specific model of an interfa
described by a self-avoiding closed path in a planar graphG.
The graphG is dual to a graphG0 , which defines a nearest
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PRE 59 2573COMPUTATIONAL COMPLEXITY OF DETERMINING THE . . .
neighbor RBIM. The edges ofG will be the faces of the cells
defining interface motion. The face separating cellsi andj is
assigned weight 2Ji j . Here we will restrict theJi j to have
non-negative half-integer values. The energy of the loop
then the sum of the weights of the edges it passes thro
This interface might define the surface of a magnetic dom
in two dimensions, for example. Finding the barrier th
separates two configurations of a loop in the plane will
referred to here as the loop-barrier problem. Note that
loop is permitted to vary in length.

The ground state of a loop in a plane can be determine
polynomial time using maxflow algorithms@4,5,15# on the
graphG0 . One can either find the minimum cost interfa
separating two points or regions, for example, or a globa
minimal interface@16#. Not all loop or path problems in the
plane are so easily solved. There is at least one exam
where finding the ground state for a loop is an NP-comp
problem: the NP-complete problem of finding a Hamiltoni
path in a planar cubic graph can be reduced to determin
the ground state of a loop in the plane with fixed length@17#.
In contrast, finding the minimal directed path of fixed leng
is easily shown to be linear in the volume of the lattice,
shortest-path algorithms can be used@3#.

It will be shown here that the loop-barrier problem is N
complete by a reduction of the problem planar thre
satisfiability ~P3SAT! @8,18#. That is, any algorithm tha
solves the loop-barrier problem can be applied to so
P3SAT problems and the time taken to translate an insta
~realization! of the P3SAT problem to a loop-barrier instan
is bounded by a polynomial in the size of the P3SAT
stance. Since P3SAT is NP-complete, it follows that de
mining the barriers for loops in the plane~and, trivially, bar-
riers to the motion of closed surfaces in higher dimensio!
is NP complete.

To define P3SAT, it is convenient to consider first t
more general problem of 3-satisfiability~3SAT! @8#. An in-
stance of 3SAT is defined by a set ofp8 Boolean variables
B5$u1,...,up8

% andq8 clausesC5$c1 ,...,cq8%. A clauseci is
a triplet of literals,

ci5$zi
1,zi

2,zi
3%, ~4!

where each literalzi
a is eitheruj or ū j ~the negation ofuj ! for

some 1< j (a,i )<p8. The set of clauses is said to be satis
able if, for some set of truth assignments for the$uj%, at least
one of the literals inci is true, for all 1< i<q8. That is, there
is a choice of values for the$uj% such that the Boolean ex
pression

~z1
1∨z1

2∨z1
3!∧~z2

1∨z1
2∨z1

3!∧¯∧~zq8
1 ∨zq8

2 ∨zq8
3

! ~5!

is true. The problem 3SAT is to determine whether Eq.~5! is
satisfiable.

A given satisfiability problem can be identified with
graphG85(V8,E8), with vertices

V5$vk :1<k<p81q8%5BøC, ~6!

~renaming variables$u1 ,...,up8% and clauses$c1 ,...,cq8% as
$v1 ,...,vp8% and$vp811 ,...,vp81q8%, respectively!. The edge
setE8 is defined by
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E85$~v i ,v j !:1< i<p8,

p8, j <p81q8, uiPcj 2p8 or ū jPcj 2p8%. ~7!

The instances of P3SAT are just those 3SAT instan
whose graphsG8 can be embedded in a plane~the vertices
and edges can be placed so that edges do not intersect.!

P3SAT has been shown to be NP-complete@18#. In the
proof developed in Ref.@18#, it is shown that any 3SAT
instance can be polynomially reduced to a P3SAT instan
The construction of the P3SAT graphG ~p variables andq
clauses! from G8 ~p8 variables andq8 clauses! has three
properties that are central to the following reduction:Prop-
erty 1—There exists a cyclic pathL that intersects none o
the edges of the graphG, but passes through all of the ve
ticesv i with 1< i<p, that is, all of the nodes correspondin
to the variables$ui%. Property 2—The edges between var
ables and clauses can be arranged so that only variables~ne-
gated variables! are in interior~exterior! clauses. More pre-
cisely, define the two setsCint and Cext, consisting of the
clauses interior and exterior to the cycleL. Then, given any
variable index 1< i ,p, for all cPCext, ui¹c, and for all
cPCint , ūi¹c @19#. In particular, variablesuj may be
‘‘split’’ into two nodes of the graph, representing the litera
uj and ū j , so that a variable and its complement are se
rated byL. Property 3—No literal is a member of more tha
two clauses. Properties~2! and ~3! are a restatement o
lemma 1 in Ref.@18#. An example of a P3SAT problem an
its corresponding graph, showing the pathL through ‘‘split’’
variables, is shown in Fig. 1.

A loop-barrier problem can be constructed from a P3S
instance with properties~1!–~3!, with the number of steps in

FIG. 1. A particular realization of P3SAT ~planar
3-satisfiability!, represented as a planar graphG. The ‘‘splitting’’ of
the Boolean variables into a variable and its negation are show
pairs of literals~filled squares! connected by thick edges. Clause
are indicated by open circles. Edges between literals and clause
indicated by thin lines. Clauses have edges to a maximum of th
literals and literals have edges to a maximum of two claus
The loop L passes between all pairs of literals, but does
intersect any of the edges between variables and clauses.
particular Boolean expression represented by this graph
a∧b∧d∧ f ∧g5(x∨y∨w)∧(x∨y)∧(w∨z)∧( ȳ∨ z̄)∧(w̄∨ x̄). Deter-
mining whether such a planar graph is satisfiable, that is, whe
there exists an assignment of truth values to the Boolean varia
for which the expression is true, is an NP-complete problem.
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2574 PRE 59A. ALAN MIDDLETON
the construction polynomial in the size of the P3SAT
stance, such that a computation of the barrier for loop mo
would determine the satisfiability of the P3SAT instanc
The loop considered is a self-avoiding~no vertex is shared
by more than two edges! returning walk on a lattice~i.e., a
simple cycle!. In order to make the closest connection
problems in condensed matter physics, the problem
mapped onto a regular lattice, though a slightly simpler

FIG. 2. ~a! The embedding of the graphG of Fig. 1 into a square
lattice A; the loopL is indicated by the dashed line and edges inG
are indicated by thick lines.~b! An illustration of the refinementA2

of A constructed by halving edge lengths.~c! The square lattice dua
to A2 ~excluding the point corresponding to the boundary cyc!,
Ad , for the sample graph, with the loopL contracted so that its
edges lie in the dual graph. The nodes ofG now correspond to
squares while the edges ofG correspond to sequences of squar
The shaded region indicates the area illustrated in detail in Fig
n
.

is
-

duction onto a general planar graph can be made. The en
of a loop is defined by summing edge weightsEi j 52Ji j for
the ‘‘faces’’ ~i.e., edges! separating nearest neighbor pairs
cells~ij !. As in the general case discussed above, the allo
moves are those that change the path by moving the l
sequentially over single cells~a polygon in this planar case.!
The barrier problem is to determine the barrier between
loop configurations, given the elementary cell-cross
moves and the constraint of self-avoidance.

The central notion behind the reduction can be summ
rized briefly. The barrier problem will be constructed so th
the energy of a loop, initially coinciding with the cycleL
~Fig. 1!, will be lowered by distorting it so that it passe
through locations corresponding to the clauses. Each s
distortion can lower the loop energy by no more than a u
amount. These distortions of the loop will implicitly requir
a choice of truth values for the variables, by the direction
which the loop is distorted. If all of the clauses can be sa
fied, by choosing truth values for a sufficient number of va
ables, the energy of the loop will be lowered from its initi
value by an amountq, allowing the loop to move into an
otherwise forbidden region, which has a barrierq to enter.
Hence, if the P3SAT instance is satisfiable, the barrier
motion of the loop into the forbidden region will be zero.
the P3SAT instance is not satisfiable, the barrier to mot
into the forbidden region will be positive. The satisfiabili
of the instance therefore holds if and only if the barrier
zero.

The first step of the construction is to embed the P3S
graphG, with the loopL guaranteed by property~1! and with
variables split into literals, into a square gridA of size poly-
nomial inp1q @20# @Fig. 2~a!#. The gridA is then refined by
dividing each square into four smaller squares and then a
ing a single border layer of squares around the whole latt
resulting in the gridA2 @Fig. 2~b!#. This step ensures that a
nodes corresponding to nodes ofG are separated from eac
other and from the edges of the loopL by a distance of at
least two lattice spacings, and that no node is on the bou
ary of the grid. Given this refined embedding ofG, the grid
Ad is defined as the dual ofA2 , excluding the dual node tha

.
.

FIG. 3. Pictorial representation of rules for assignment
weights in the graphT. Heavy edges have weight 2, dashed edg
have weight 1, and thin edges have weight 0.~a! Edges that inter-
sect an edge inG between literals are assigned a weight of 2.~b!
Edges that intersect an edge inG between a literal and a clause a
assigned weight 1.
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corresponds to the boundary cycle ofA2 . Each node of the
lattice embedding ofG will now correspond to a squar
plaquette inAd @Fig. 2~c!#. The final lattice is constructed b
drawing a diagonal with uniform direction across t
plaquettes ofAd , defining a triangular gridT, with each node
of G corresponding to two triangles. The cells ofT will be
the cells defining interface motion.

The correspondence between the P3SAT instance and
edge costs is best made clear by reference to Fig. 3 and
4, which illustrate weight assignment rules, and Fig. 5, wh
illustrates a subgraph ofT for the sample expression. Firs
weights are assigned to edges ofT that intersect the edges o
G ~Fig. 3!. The edges ofT that intersect edges ofG between
literals are assigned a weight of 2. The edges ofT that inter-
sect edges between literals and clauses are assigned wei
Next, the weights of edges inT that are incident upon the
edges corresponding to squares inAd that contain a literal or
a clause are assigned~Fig. 4!. The weight of the diagona
edge corresponding to a literal is set to 2. The pair of
angles corresponding to the node for the literal then divi
the weight into two edges of unit cost, if the literal is
member of two clauses. If a literal is a member of only o
clause, one of the edges of the square that does not inte
an edge ofG is set to have a weight of 1, so that the liter

FIG. 4. Pictorial representation of rules for assignment
weights in the graphT, for edges near literals and clauses.~a! The
two triangles corresponding to a literal that is a member of t
clauses are designed to share the weight between the two pa
the clauses. In this figure, the left branch connects to the negatio
the literal, while the down and right branches connect to a claus
a literal is a member of only one clause, the literal ‘‘absorbs’’ o
unit of weight. The left side of the literal is connected to anoth
literal, while the right branch is connected to a clause, in this
ample.~b! Clause regions are designed to lower the weight of
loop, when it intersects one corner of the clause square, by a
amount. Triangles that are at the ends of edges incident up
clause meet at a single node of the square corresponding to a cl
This node is referred to as a clause node. The self-avoidance
straint prohibits the loop from moving ‘‘through’’ the clause nod
or the loop from simultaneously intersecting the clause node f
more than one direction and thereby lowering the loop energy m
than once per clause.
the
ig.
h

t 1.

-
s

e
ect
l

will ‘‘absorb’’ one unit of cost and one unit of energy ca
leave the square. The most complicated part of the const
tion is the assignment of weights near clauses@Fig. 4~b!#.
Note that, near clauses, these rules may override the
shown in Fig. 3~b!. Up to three edges ofG may enter a
clause square inAd . One corner of the clause square is ch
sen to represent the clause. This corner will be referred t
a clause node. The weights inT near this node are set so th
~a! a primitive move that places the interface on this corn
reduces the weight of the loop by a unit amount and~b! the
interface cannot move ‘‘forward’’ through the node at lo
cost. These requirements~a! and ~b! are met by identifying
triangles containing the clause node with the ends of
edges ofG between literals and clauses. These triangles h
two edges of weight zero and the other edge with wei
one, with the zero weight edges incident upon the cor
representing the clause. Note that due to the self-avoida
constraint, a loop may pass through a given clause nod
most once. The horizontal and vertical edges that border
edges between clauses and variables, and between lite
and have not yet been assigned a weight, are set to h
weight 0. The weights of edges onL that do not intersect
edges ofG are set to zero. The remainder of the edges~edges
completely covered by the hatched regions in Fig. 5! are set
to have weightq. To complete the definition, the weights o
three edges nearL, which would otherwise beq by the pre-
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FIG. 5. In the final step of the reduction, the square plaquette
A2 are divided into two triangles by the introduction of diagon
edges. Weights are then assigned to the edges, according t
rules listed in the text and illustrated in Fig. 3 and Fig. 4. Ed
weights for the shaded region of Fig. 2~c! are shown here. Edge
that intersect the hatched areas are assigned a weight ofq. The
weight of edges on the loopL that are not used to connect literals
set to zero. The heavy line segments indicate edges of weight 2
the dashed segments indicate edges of weight 1. Thin edges
assigned a weight of 0. The final part of the assignment of
weights forT is to set the weights for three edges nearL to zero, as
indicated by the unhatched edges at the bottom right of the fig
The barrier problem is to distortL with minimal maximum cost so
that it passes through these three zero-weight edges.
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2576 PRE 59A. ALAN MIDDLETON
vious step, are set to zero, as shown in Fig. 5.
Now that the graph and edge weights for a loop-bar

problem have been defined, the initial and final configu
tions can be described. The initial path is taken to be the p
describing the loopL. The total weight ofL is 2p. The final
path is taken to be the one differing fromL by only two
primitive moves and that passes through the three edge
to zero weight in the final step of the weight definitions. T
final configuration is also of weight 2p. The barrier problem
is to determine whether there is a barrier ofzero energy
separating the initial and final path. This will be so if an
only if the initial path can be distorted so that its energy
first lowered byq from the initial energy. This allows a bon
coinciding with L to be moved onto the high cost diagon
near the zero weight goal edges without exceeding the in
energy. Note that while the loop cost remains greater t
2p2q, all moves that do not raise the loop cost abovep
are neutral in cost, except for those that move the loop o
a clause node and thereby lower the energy by a unit amo

In order to lower the loop energy to 2p2q, the initial
loop L must be distorted until it intersects all of the clau
nodes; such a path configuration can be reached with
exceeding the initial energy if and only if the given instan
of P3SAT can be satisfied. First, suppose that such a pa
configuration can be reached. Property~2! implies that mov-
ing the loopL in a particular direction~neglecting high cost
moves! chooses a truth value for a variable by moving t
loop through the region corresponding to a literal; the lo
cannot be in a state where it has passed through both lite
for a single variable an odd number of times, without fi
passing through a barrier of at leastq in energy. Once a
literal is chosen, all of the unsatisfied clauses that it belo
to can be satisfied by distorting the loop onto the correspo
ing clause node. Given a loop that intersects all clauses,
ues for the variables that satisfy the expression can thu
directly deduced from which literals the loop has pass
through an odd number of times. If a loop configuration
weight 2p2q reachable fromL without raising the energy
above 2p exists, the P3SAT instance can be satisfied. C
versely, suppose that the P3SAT instance can be satis
There must then exist an assignment of truth values to
variables that satisfy the instance. Given such an assignm
the loop L can be moved so that it passes over the co
sponding literals with zero cost. The loop can then be mo
to simultaneously pass through allq clause nodes withou
raising the loop cost at any time, since, by the satisfiability
the P3SAT instance, each clause has a member one o
literals over which the loop has been moved. The loop w
then have a weight 2p2q.

Given a loop configuration of weight 2p2q reachable
without moves of costq, the loop can then be moved on
g
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the high cost diagonal near the goal edges, raising its en
by q back to 2p. The loop energy can then be immediate
lowered by the same amount, by moving the loop onto
zero weight goal edges. The earlier moves that lowered
energy byq can then all be reversed, returning the remain
of the loop to its original state. The height of the barri
between initial and final loop configurations is then ze
This sequence of moves exists if and only if a loop config
ration of weight 2p2q can be reached with zero barrie
Answering the question about the magnitude of the loop b
rier is therefore equivalent to determining whether the
signment instance from which it was derived can be satisfi
Since P3SAT is NP-complete, the general problem of de
mining the barrier to motion of a loop in a plane is also N
complete.

V. COMMENTS

In a general sense, physical barrier problems can be
lated to resource allocation problems that are NP-compl
It has been shown here that the problem of determining
exact barrier to a self-avoiding loop in the plane, given in
ger edge weights bounded by the volume of the system~q
,n, where n is the number of triangles inT!, is NP-
complete. Physically, this is most closely related to the b
rier to the motion of a self-avoiding interface in an RBIM
The proof of this result is based upon a mapping between
assignment of truth values that satisfy a Boolean expres
and the distortions of a loop necessary to lower its energy
a given amount. The loop energy can be lowered sufficien
to cross a barrier towards the goal loop if and only if t
Boolean expression can be satisfied. An immediate appl
tion of this result is to undirected paths in samples w
periodic boundary conditions. A region interior to the loopL
that does not intersect any of the edges corresponding toG or
the final loop configuration can be removed fromT, so that
the loop-barrier problem corresponds to the motion of a lo
on an annulus. This implies that the barrier problem fo
periodic path in 111 dimensions is NP complete, in th
general case of a self-avoiding cyclic path@21#. It is unclear
at this time whether determining the barrier to motions o
directed path @7# in 111 dimensions is an NP-complet
problem. Even if such a problem is NP complete, this do
not rule out the existence of heuristic methods, which c
give useful upper and lower bounds on the barrier, such
those described in Ref.@7#.
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