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Computational complexity of determining the barriers to interface motion in random systems
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The low-temperature driven or thermally activated motion of several condensed matter systems is often
modeled by the dynamics of interfac@&®-dimension-1 elastic manifoldsubject to a random potential. Two
characteristic quantitative features of the energy landscape of such a many-degree-of-freedom system are the
ground-state energy and the magnitude of the energy barriers between given configurations. While the numeri-
cal determination of the former can be accomplished in time polynomial in the system size, it is shown here
that the problem of determining the latter quantity is nondeterministic polynomial time complete. Exact
computation of barriers is therefofalmost certainly much more difficult than determining the exact ground
states of interface$S1063-651X98)14611-1

PACS numbgs): 05.45-a, 05.70.Ln, 02.70.Lq, 75.10.Nr

[. INTRODUCTION complete problems, though a proof of this is an outstanding
problem in computer science. Showing that determining bar-
Numerical computation has been extensively used forier heights can be an NP-complete problem therefore
confirming scaling relations from analytical work and for Strongly suggests that no polynomial time algorithm can be
computing exponents in the statistical mechanics of disorfound that exactly determines barrier heights.
dered systems, such as random magnetic syst&mn or-
_der to calculate I_ong Wavelength and low frequency behav- Il. INTERFACE MODEL
iors, and to precisely determine exponent values, one needs
to study a number of samples of large dimension. The utility To address the computational complexity of a problem, a
of numerical techniques strongly depends on how the comdiscrete formulation must be given and the size of the prob-
putational demands, such as the number of operations needkuin must be defined. We consider here the study of the con-
by an algorithm, scales with system size. Direct simulatiorfigurations of a self-avoiding, connect&@tdimensional in-
by Monte Carlo techniques often cannot be used to detetterface embedded in a bounded reg¥ RY, d=D+1,
mine the exact ground state in large systems, for examplsuch as might be used to approximate a domain wall in a
due to the extremely slow relaxation times typical of disor-magnet. The interface separafésnto two disjoint sets. A
dered systemg2]. In contrast, the exact ground state can bediscretization can be made by approximating the interface by
found for many systemg3—6], using combinatorial optimi- a set of D-dimensional polyhedra, which are the faces of
zation techniques, with a computational time that growsd-dimensional cells that partition the regio One might
polynomially with the volume of the system (in practice, consider the cells to represent actual atgmish the polyhe-
the computational time often scales roughly\gfs with 1 dral faces being polygons far= 3 lattices or as elements of
<b<2 [5,6].) More detailed information about the “energy a coarse-grained description, with cells having a size of typi-
landscape” of the model, besides ground state energies, &8l disorder-induced distortions in the elastic interfaté.
needed to determine dynamical behavior, which is generallyhe size of the interface problem can then be defined as the
modeled by studying thermal activation over barriers be-number of cellsn in the decomposition oK, assuming that
tween low-energy statd®,7]. It is shown in this paper that, there is am-independent bound on the number of faces for
for many models that might be of physical interest, the nu-any cell, so that the number of discrete faces that make up
merical study of barrier heights is in the set of NP-completethe interface is then bounded by a constant multiplen of
problems[8]. [12]. The dynamics of the interface is a sequence of simple
To define NP-complete problems, one first defines NPAmoves that move the interface through primitive cells, one at
(nondeterministic polynomial timeproblems[8]. A problem  a time, while maintaining the self-avoidance and connected-
that is NP is one for which a proposed solution can be veriness constraints.
fied in an amount of time that grows no faster than a poly- For this model of an interface, it is natural to reformulate
nomial in the size of the problem definition, given a model ofthe interface problem as an Ising model on a gra&ph
a computer as a Turing machif@. An NP-complete prob- =(Vq,Eg) given by the cellular decomposition of. The
lem is then defined as an NP problem such that if theraodes of the grap, are identified with the primitive cells
existed an algorithm that produced a solution in polynomial(Eq will be defined for special cases, in the next paragraph.
time (polynomial in the size of the definition of the problem Each node is assigned a spin variable which takes on
such an algorithm could be adopted to solve any NP problemmalues*1, with a sign depending on which side of the in-
in polynomial time. The class of NP-complete problems in-terface celli, 1<i=<n, belongs to. In general, the energy of
cludes the traveling salesman problé8) and ground states the interface could be any function of thg} and could have
of spin glasses on general grapig]. It is generally be- a number ofindependenvalues exponential in. Determin-
lieved that no polynomial-time algorithm exists for NP- ing the ground state of the interface given by such an energy
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function would likely necessitate the computation of a num- lll. BARRIER FOR AN ARBITRARY GRAPH

ber of energies exponential in the volume. We do not con-
sider this case here, as it is not of physical interest. Though the ground state of the random-bond or random-

A more restricted, but natural case, is to represent thgeld Ising magnet for a given realization of bonds can be

energy of an interface as the sum over interactions betwee,([fp]oemr?lzjrtﬁge'rno?%gr:gzu;ﬁgfs?tgée_%ol:;‘geeoti)ﬁe?npgflﬂ?no dr;:qlal n
the spins. That is, consider the energy function . ! P 9
the barrier between two states will be shown here to belong

to the class of NP-complete problems, for the motion of a
e 2 Joss B self-gvoiding interfgce. There are no known polynomigl—time
S algorithms for solving NP-complete problems and it is gen-
erally believed that such problems require a time for solution
) that grows faster than any polynomial in the problem size
where theJ;; are edge weights; whed;#0, an edgee  [g] The barrier problem is therefofalmost certainly in a
=(i,j) € Eo is included inG,. We consider here only the computational complexity class distinct from that of the
case ofJ;;=0, as the case wheik;<0 for some bonds is ground-state problem.
the spin-glass problem, for which determining even the  The parrier problem can be shown to be NP-complete for
ground state is an NP-complete problem, for graphs of physigeneral graphs. This is done by a reducti8hof a register
cal lattices in more than two dimensiof0]. The energy is  gJlocation problem, which has been shown to be NP-
equal to twice the total weight of the bonds that intersect th%omplete[14], to the barrier problem. Loosely statésee
interface, up to the additive constants;; J;; . If the energy  [14] for more detail, the register allocation problem is that
is given by nearest neighbor interactions, iJg.#0 only for  of determining the amount of memory a CPU needs to use to
cellsi and]j that share a face, this energy corresponds to &tore intermediate results in the evaluation of an arithmetical
nearest neighbor random-bond Ising moRBIM). expression. The problem size is given by the size of the
The ground state energy of the interface is then defined agrithmetical expression, which is defined by a set of paren-
finding the minimum ofE over all configurationgs;}, pos-  thesized binary operations. Initially, no register memory is
sibly subject to boundary conditions that define the two reysed, but values for the variables in the expression are loaded
gions of space that are to be separated. Such ground stgifo registers and intermediate results are stored in registers,
energies and configurations give a great deal of informatioqntil the expression is completely evaluated. The cost to be
about the system, including the response to boundary condininimized is the maximum number registers in use at any
tion changes and sensitivity to random changes inXhe time during the computation. The cost is affected by the
[13]. Such information for the RBIM and many other prob- order in which the binary operations are evaluated and in
lems can be found using polynomial-time algorithfBs5]. which the values are loaded into registers. The correspon-
A more subtle characterization of the energy landscape igence between the register allocation problem and finding
the energetics of extremal paths in configuration space. Ahe minimal barrier to interface motion can be made by iden-
sequence of configurations related by simple ma#lgss of  tifying cells as the numerical valugsriginal inputs to the
single spins adjacent to the interfaeee the paths of interest expression and the results of binary operatioreeded in the
in configuration space. The cost of a path is defined as thgyaluation of the arithmetic expression and identifying
maximal value of the interface energy over all intermediateshared faces of the cells with the dependencies of results on
configurations in the path. The barrier between two giversybexpressions. The interface separates evaluated numbers
configurations can then be defined as the minimal cost ovefom intermediate results yet to be computed. The energy of
all allowed paths between the two configurations. the interface is taken to be the number of cells that contact
More precisely, a patl@ of length M is defined by an  one side of the interface; this is the number of intermediate
initial configuration {s;} and a sequence of locations for results that are available in registers for further evaluation of
single spin flips{Q;,Q,,....Qu}, with 1<Q;j<nforalll  the expression. The optimization of register use is then
<j=<M. Each spin flip corresponds to moving a cell from equivalent to finding the minimum energy barrier to moving
one partition(side of the interfaceto the other, with the an interface through the graph determined by the algebraic
sequence constrained by the interface self-avoidance angkpression. As the register allocation problem is NP-
connectedness conditions. The result of a partial sequence ebmplete, the correspondinghigh-dimensional interface
spin flips PEZ(Ql,...,Qk), 1<k=M, operating on a spin problem is NP-complete. | do not give a more detailed proof
configuration{s;} is given by its action on individual spins here, however, as the following section shows that a re-
stricted interface barrier problem is NP-complete. This di-
@) rectly implies the NP-completeness of the more general
problem. It is of interest, however, to note the close relation-
ship between the determination of barriers in a type of inter-
wheren,; is the number of time§,=i for 1<I<k. Py is  face motion and computational resource problems such as
the identity operation. The value of the barriB(S,,S,) register allocation.
separating two spin configuratio®s={s!} andS,={s?} is
then given by IV. BARRIER FOR A LOOP IN D=2

PRsi=(—1)"is;,

) 0 Consider now the more specific model of an interface
B(S;,S;)=  min max E[Pe{si}]. (3 described by a self-avoiding closed path in a planar g@ph
{QIP§(Sp =8} K=0:-M(Q) The graphG is dual to a grapl,, which defines a nearest-
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neighbor RBIM. The edges @ will be the faces of the cells
defining interface motion. The face separating cedadj is
assigned weight Z; . Here we will restrict theJ;; to have
non-negative half-integer values. The energy of the loop is
then the sum of the weights of the edges it passes through.
This interface might define the surface of a magnetic domain
in two dimensions, for example. Finding the barrier that
separates two configurations of a loop in the plane will be
referred to here as the loop-barrier problem. Note that the
loop is permitted to vary in length.

The ground state of a loop in a plane can be determined in
polynomial time using maxflow algorithm&t,5,19 on the
graphG,. One can either find the minimum cost interface
separating two points or regions, for example, or a globally
minimal interface[;G]. Not all loop or_path problems in the FIG. 1. A particular realization of P3SAT (planar
plane gre .SO easily solved. There is at 'Ieast one eXamp?—satisfiability, represented as a planar graphThe “splitting” of
where finding the ground state for a qup IS an NP'C_Omp_Ietefhe Boolean variables into a variable and its negation are shown as
problem: the NP-complete problem of finding a Hamiltonian ,4rs of jiterals(filled squares connected by thick edges. Clauses
path in a planar cubic graph can be reduced to determiningre indicated by open circles. Edges between literals and clauses are
the ground state of a loop in the plane with fixed lendtfll.  indicated by thin lines. Clauses have edges to a maximum of three
In contrast, finding the minimal directed path of fixed lengthijiterals and literals have edges to a maximum of two clauses.
is easily shown to be linear in the volume of the lattice, asthe loop L passes between all pairs of literals, but does not
shortest-path algorithms can be ug8dl intersect any of the edges between variables and clauses. The

It will be shown here that the loop-barrier problem is NP- particular Boolean expression represented by this graph is
complete by a reduction of the problem planar three-aObOdOf Og=(xOyOw)O(xOy) O(wOz) O(yOz) O(wDx). Deter-
satisfiability (P3SAT) [8,18]. That is, any algorithm that mining whether such a planar graph is satisfiable, that is, whether
solves the loop-barrier problem can be applied to solvehere exists an assignment of truth values to the Boolean variables
P3SAT problems and the time taken to translate an instander which the expression is true, is an NP-complete problem.
(realization) of the P3SAT problem to a loop-barrier instance

is bounded by a polynomial in the size of the P3SAT in- E'={(vi,vj):1sisp’,

stance. Since P3SAT is NP-complete, it follows that deter-

mining the barriers for loops in the plaand, trivially, bar- p'<j<p'+q’, UjeCj_p OF UjeC p}. (7)

riers to the motion of closed surfaces in higher dimengions

is NP complete. The instances of P3SAT are just those 3SAT instances

To define P3SAT, it is con\_/enie_n.t to consider fir_st the\whose graphss’ can be embedded in a plafie vertices
more general problem of 3-satisfiabili@SAT) [8]. Anin-  and edges can be placed so that edges do not intersect.
stance of 3SAT is defined by a set jpf Boolean variables P3SAT has been shown to be NP-complgt8]. In the
B:{Ul,...upr} andq’ clausesC={cy,....cq'}. Aclauseciis  proof developed in Ref[18], it is shown that any 3SAT
a triplet of literals, instance can be polynomially reduced to a P3SAT instance.

The construction of the P3SAT grah (p variables andj
ci={z.2}.z%}, (4)  clausey from G’ (p’ variables andq’ clause} has three
o properties that are central to the following reducti®&nop-
where each literat? is eitheru; or u; (the negation ofij) for  erty —There exists a cyclic path that intersects none of
some kj(a,i)<p’. The set of clauses is said to be satisfi-the edges of the grapB, but passes through all of the ver-
able if, for some set of truth assignments for {fog}, atleast  ticesv; with 1<i<p, that is, all of the nodes corresponding
one of the literals irt; is true, for all I<i=<q'. That is, there to the variablequ;}. Property 2—The edges between vari-
is a choice of values for thfu;} such that the Boolean ex- ables and clauses can be arranged so that only variaiges
pression gated variablgsare in interior(exteriop clauses. More pre-
cisely, define the two set§;,; and C., consisting of the
(2402502) (25025 023) 0 -+ Dz, 0z, 0z;,) -~ (5)  clauses interior and exterior to the cy¢leThen, given any
variable index ¥i<p, for all ce Cqy, Uj¢c, and for all
is true. The problem 3SAT is to determine whether &yjis  ceCjy, uj¢c [19]. In particular, variablesu; may be

satisfiable. “split” into two nodes of the graph, representing the literals
A given satisfiability problem can be identified with a u; andu;, so that a variable and its complement are sepa-
graphG’=(V’,E’), with vertices rated byL. Property 3—No literal is a member of more than
two clauses. Propertie€) and (3) are a restatement of
V={v,:1<sk=sp’'+q'}=BUC, (6) lemma 1 in Ref[18]. An example of a P3SAT problem and

its corresponding graph, showing the patthrough “split”
(renaming variable$u, ,...,u, } and clausegc,,....cq} as  variables, is shown in Fig. 1.
{v1,...vpand{vyriq,....0p 4o}, respectively. The edge A loop-barrier problem can be constructed from a P3SAT
setE’ is defined by instance with propertie€l)—(3), with the number of steps in
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duction onto a general planar graph can be made. The energy
of a loop is defined by summing edge weigkts=2J;; for

the “faces” (i.e., edgepseparating nearest neighbor pairs of
cells(ij). As in the general case discussed above, the allowed
moves are those that change the path by moving the loop
sequentially over single cella polygon in this planar cage.
The barrier problem is to determine the barrier between two
loop configurations, given the elementary cell-crossing
moves and the constraint of self-avoidance.

The central notion behind the reduction can be summa-
rized briefly. The barrier problem will be constructed so that
the energy of a loop, initially coinciding with the cycle
(Fig. 2), will be lowered by distorting it so that it passes
through locations corresponding to the clauses. Each such
distortion can lower the loop energy by no more than a unit
amount. These distortions of the loop will implicitly require
a choice of truth values for the variables, by the direction in
which the loop is distorted. If all of the clauses can be satis-
fied, by choosing truth values for a sufficient number of vari-
ables, the energy of the loop will be lowered from its initial
value by an amount], allowing the loop to move into an
otherwise forbidden region, which has a barngto enter.
Hence, if the P3SAT instance is satisfiable, the barrier to
motion of the loop into the forbidden region will be zero. If
the P3SAT instance is not satisfiable, the barrier to motion
into the forbidden region will be positive. The satisfiability
of the instance therefore holds if and only if the barrier is
zero.

The first step of the construction is to embed the P3SAT
graphG, with the loopL guaranteed by propertyt) and with
variables split into literals, into a square gAdof size poly-
nomial inp+q [20] [Fig. 2@)]. The gridA is then refined by
dividing each square into four smaller squares and then add-
ing a single border layer of squares around the whole lattice,
resulting in the gridA, [Fig. 2(b)]. This step ensures that all
nodes corresponding to nodes®@fare separated from each
other and from the edges of the loapby a distance of at
least two lattice spacings, and that no node is on the bound-
ary of the grid. Given this refined embedding @&f the grid
A, is defined as the dual &, excluding the dual node that

H——

FIG. 2. (a) The embedding of the graph of Fig. 1 into a square
lattice A; the loopL is indicated by the dashed line and edge&in
are indicated by thick linegb) An illustration of the refinemem,
of A constructed by halving edge lengtle). The square lattice dual
to A, (excluding the point corresponding to the boundary cycle
A4, for the sample graph, with the lodp contracted so that its
edges lie in the dual graph. The nodes@fnow correspond to
squares while the edges &f correspond to sequences of squares.
The shaded region indicates the area illustrated in detail in Fig. 5.

the construction polynomial in the size of the P3SAT in-
stance, such that a computation of the barrier for loop motion
would determine the satisfiability of the P3SAT instance.

(a) ¥

Eim— )

(b) 2

FIG. 3. Pictorial representation of rules for assignment of

The loop considered is a self-avoiditigo vertex is shared eights in the grapfT. Heavy edges have weight 2, dashed edges
by more than two edggseturning walk on a latticéi.e., @  have weight 1, and thin edges have weightd).Edges that inter-
simple cyclg. In order to make the closest connection tosect an edge i between literals are assigned a weight of (9.
problems in condensed matter physics, the problem igdges that intersect an edgeGrbetween a literal and a clause are
mapped onto a regular lattice, though a slightly simpler reassigned weight 1.
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FIG. 4. Pictorial representation of rules for assignment of
weights in the grapf, for edges near literals and clausé®. The
two triangles co_rrespondmg to a I|ter§1I that is a member of two FIG. 5. In the final step of the reduction, the square plaquettes of
clauses are designed to share the weight between the two paths[?o

D h h . » are divided into two triangles by the introduction of diagonal
the qlauses. I_nthls figure, the Ie_ft branch connects to the negation dges. Weights are then assigned to the edges, according to the
the literal, while the down and right branches connect to a clause. |

: - ’ . . ules listed in the text and illustrated in Fig. 3 and Fig. 4. Edge
a I!teral is a member of qnly one cIayse, t.he literal aé)sorbs ?]neweights for the shaded region of Fig(c2 are shown here. Edges
unit of weight. The left side of the literal is connected to anot €lihat intersect the hatched areas are assigned a weight The

literal, while the right branch is connected to a clause, in this ex-Weight of edges on the lodpthat are not used to connect literals is

ample. (b) C!a_use regions are designed to lower the weight of theset to zero. The heavy line segments indicate edges of weight 2 and
loop, When,'t iniersects one camer of the clause square, by a unfhe gashed segments indicate edges of weight 1. Thin edges are
amount. Trlangles_ that are at the ends of edges |n<_:|dent upon stigned a weight of 0. The final part of the assignment of the
clause meet at a single node of the square corresponding to a ClauWeights forT i to set the weights for three edges nkdo zero, as

This_ node i_s .referred to as a clau§e n:)de. The” self-avoidance COfhdicated by the unhatched edges at the bottom right of the figure.
straint prohibits the loop from moving “through” the clause nodes The barrier problem is to distott with minimal maximum cost so

or the loop from_simgltaneously intersectir]g the clause node frorqhat it passes through these three zero-weight edges.
more than one direction and thereby lowering the loop energy more
than once per clause. will “absorb” one unit of cost and one unit of energy can
leave the square. The most complicated part of the construc-
corresponds to the boundary cycleA&f. Each node of the tion is the assignment of weights near clauf€ig. 4(b)].
lattice embedding ofG will now correspond to a square Note that, near clauses, these rules may override the rule
plaquette inAq4 [Fig. 2(c)]. The final lattice is constructed by shown in Fig. 8b). Up to three edges o6 may enter a
drawing a diagonal with uniform direction across the clause square iAy. One corner of the clause square is cho-
plagquettes oAy, defining a triangular grid, with each node sen to represent the clause. This corner will be referred to as
of G corresponding to two triangles. The cells Diwill be  a clause node. The weightsThnear this node are set so that
the cells defining interface motion. (a) a primitive move that places the interface on this corner
The correspondence between the P3SAT instance and theduces the weight of the loop by a unit amount énidthe
edge costs is best made clear by reference to Fig. 3 and Fignterface cannot move “forward” through the node at low
4, which illustrate weight assignment rules, and Fig. 5, whichcost. These requirements) and (b) are met by identifying
illustrates a subgraph df for the sample expression. First, triangles containing the clause node with the ends of the
weights are assigned to edgesTahat intersect the edges of edges ofG between literals and clauses. These triangles have
G (Fig. 3). The edges of that intersect edges @ between two edges of weight zero and the other edge with weight
literals are assigned a weight of 2. The edged diat inter-  one, with the zero weight edges incident upon the corner
sect edges between literals and clauses are assigned weightdpresenting the clause. Note that due to the self-avoidance
Next, the weights of edges il that are incident upon the constraint, a loop may pass through a given clause node at
edges corresponding to square®\inthat contain a literal or  most once. The horizontal and vertical edges that border the
a clause are assignééig. 4. The weight of the diagonal edges between clauses and variables, and between literals,
edge corresponding to a literal is set to 2. The pair of tri-and have not yet been assigned a weight, are set to have
angles corresponding to the node for the literal then dividesveight 0. The weights of edges dnthat do not intersect
the weight into two edges of unit cost, if the literal is a edges ofG are set to zero. The remainder of the ed@gees
member of two clauses. If a literal is a member of only onecompletely covered by the hatched regions in Figafe set
clause, one of the edges of the square that does not interseothave weighty. To complete the definition, the weights of
an edge ofG is set to have a weight of 1, so that the literal three edges nedr, which would otherwise be by the pre-
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vious step, are set to zero, as shown in Fig. 5. the high cost diagonal near the goal edges, raising its energy
Now that the graph and edge weights for a loop-barrieby q back to 2. The loop energy can then be immediately
problem have been defined, the initial and final configuralowered by the same amount, by moving the loop onto the
tions can be described. The initial path is taken to be the pathero weight goal edges. The earlier moves that lowered the
describing the loof.. The total weight ol is 2p. The final  energy byg can then all be reversed, returning the remainder
path is taken to be the one differing fromby only two  of the loop to its original state. The height of the barrier
primitive moves and that passes through the three edges dettween initial and final loop configurations is then zero.
to zero weight in the final step of the weight definitions. TheThis sequence of moves exists if and only if a loop configu-
final configuration is also of weighti2 The barrier problem ration of weight 2—q can be reached with zero barrier.
is to determine whether there is a barrier zero energy  Answering the question about the magnitude of the loop bar-
separating the initial and final path. This will be so if andrier is therefore equivalent to determining whether the as-
only if the initial path can be distorted so that its energy issignment instance from which it was derived can be satisfied.
first lowered byqg from the initial energy. This allows a bond Since P3SAT is NP-complete, the general problem of deter-
coinciding withL to be moved onto the high cost diagonal mining the barrier to motion of a loop in a plane is also NP-
near the zero weight goal edges without exceeding the initiatomplete.
energy. Note that while the loop cost remains greater than
2p—q, all moves that do not raise the loop cost aboye 2 V. COMMENTS
are neutral in cost, except for those that move the loop onto

. In a general sense, physical barrier problems can be re-
a clause node and thereby lower the energy by a unit amoun, .
o dted to resource allocation problems that are NP-complete.
In order to lower the loop energy top2-q, the initial

loop L must be distorted until it intersects all of the clau:seIt has been shown here that the problem of determining the

nodes; such a path configuration can be reached withoquaCt barrier_to a self-avoiding loop in the plane, given inte-
exceeding the initial energy if and only if the given instance " edge weights bounded by the volume of the systgm

of P3SAT can be satisfieéfirst, suppose that such a path c<orr]r,1 Y;?:r%r? ;?C;ne tr;ﬁsmiger;gt gllggeglle?ellgt—)e, d ',[SO lt\:gbar-
configuration can be reached. Propg@yimplies that mov- piete. Fhy Y, y

. ; : o : : rier to the motion of a self-avoiding interface in an RBIM.
ing the loopL in a particular directior{neglecting high cost . . .
moves chooses a truth value for a variable by moving theThe proof of this result is based upon a mapping between the

loop through the region corresponding to a literal; the IOOpaz?jl%rzlemgirs]ioor{igrL\l;ho\fleglIJ:s ﬂrlztczzngry ?;?g;ﬁi?szﬁarfssfn
cannot be in a state where it has passed through both literafd b y gy by

for a single variable an odd number of times, without first® 9IVeN amount. The loop energy can be lowered sufficiently

pasing ough  barer of at leayn enegy. Once " 0,505 8 091EF Ioware (e 300 oo 1 o oy e,
literal is chosen, all of the unsatisfied clauses that it belong -XP : ) : . PPl
lon of this result is to undirected paths in samples with

to can be satisfied by distorting the loop onto the correspon o . e
ing clause node. Given a loop that intersects all clauses, va eriodic boundary conditions. A region interior to the Idop

; : : hat does not intersect any of the edges correspondigoto
ues for the variables that satisfy the expression can thus aﬁe final loop configuratioyn can be rgemoved fr%’mso that

directly deduced from which literals the loop has passe . ;

through an odd number of times. If a loop configuration of he loop-barrier problem corresponds to the motion of a loop
weight 20— q reachable fromt. wi'.[hout raising the energy on an annulus. This implies that the barrier problem for a
above 2 exists, the P3SAT instance can be satisfied. ConP g:g?{f Cgiteh (;Patélf-?il\%?(;?or::s cIITCNgﬂ;]O rnpi!setjer;cllgatrhe
versely, suppose that the P3SAT instance can be satisfied his ti hether d Ing yh bp e : ¢
There must then exist an assignment of truth values to tha.tt IS time whether determining the barrier to motions of a

X . : . ; irected path [7] in 1+1 dimensions is an NP-complete
variables that satisfy the instance. Given such an asmgnme%roblem_ Even if such a problem is NP complete, this does

the loopL can be moved so that it passes over the corre, ot rule out the existence of heuristic methods, which can
sponding literals with zero cost. The loop can then be moved. '

to simultaneously pass through ajlclause nodes without gr:ve uzeful %p%er and lower bounds on the barrier, such as

raising the loop cost at any time, since, by the satisfiability oft ose described in Ref7].

the P3SAT instance, each clause has a member one of the

literals over which the loop has been moved. The loop will

then have a weight2—q. This work has been supported by the National Science
Given a loop configuration of weightpg2-q reachable Foundation under Grant DMR-9702242 and the Alfred P.

without moves of cost, the loop can then be moved onto Sloan Foundation.
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